

AES 128bit key 128bit data	Throughput	Power	Figure of Merit (Gb/s/W)
0.18mm CMOS	3.84 Gbits/sec	350 mW	11 (1/1)
FPGA [1]	1.32 Gbit/sec	490 mW	2.7 (1/4)
ASM StrongARM [2]	31 Mbit/sec	240 mW	0.13 (1/85)
ASM Pentium III [3]	648 Mbits/sec	41.4 W	0.015 (1/800)
C Emb. Sparc [4]	133 Kbits/sec	120 mW	0.0011 (1/10,000)
Java [5] Emb. Sparc	450 bits/sec	120 mW	0.0000037 (1/3,000,000)

[2] Signing Gunna Gunna (Spring Spring Spring Spring Spring Gunna Gunna (Spring Spring Spring

Possibility of Accelerator Composition – Use of Accelerator Building Blocks (ABBs)

	Denoise	Deblur	Registration	Segmentation
ABBs				
Float Reciprocal (FInv)	\checkmark	\checkmark		\checkmark
Float Square-Root (FSqrt)	\checkmark	\checkmark	\checkmark	\checkmark
Float Polynomial-16 (Poly16)	\checkmark	\checkmark	\checkmark	\checkmark
Float Divide (FDiv)	\checkmark	\checkmark	\checkmark	\checkmark
		A SM	SM	ADD/SUB/MUL (ASM) From Core (NoC interface)
			Id[3:0]	Cin[13.0]

 Press releases 	Xilinx Demonstrates Industry's First QPI 1.1 Interface with FPGAs at Intel Developer Forum			
April 23, 2014 What <u>Power8</u> and OpenPOWER Might Mean for H Timothy Prickett Morgan	IPC Interconnect enables 7 series All Programmable FPGAs; extends IPC Inter processor-based systems			
IBM is making a big play in hybrid or seeking to marry its POWER8 proc with various kinds of accelerators a speed networking and opening up i and system software through the and system software through the April 10, 2013 Altera Demonstrates Ind Server Capabilities Demo Features Stratix V FPGA Configu San Jose, Calif, and IDF Beijing, Ap Sandy Bridge XEON processors, the dem supports both the Caching Agent and Mo	omputing, sessors total and high- its chip total and a the intel Developer Forum (IDF) the industry's first demonstration of orrammable gate array (FPGA) Interfacing to an Intel Sandy Bridge Xeon ser using the OuickPath Interconnet (OP) protocol Xillin's OPI solution tustry's First QPI 1.1 FPGA Home Agent for Enhanced ured to Extend Co-processing for Intel Processors a rel to Extend Co-processing for Intel Processors a rel to Extend Louis Quick Straits V FPGA configured as the Home Agent, and it monstration leverages an Altera® Straits V FPGA confugured as the Home Agent, and it mode Agent in a Poton Vigor Development Platform. This solution is ideal for designers of			
IBM is working with FPGA makers Xilin low-latency signal-processing, packet pro- running over the CAPI interface, so this 1.1 intellectual property (IP) solution to a the Impact2014 event, IBM and Xilinx w Platform at the Intel Developers Forum i	a low-latency signal-processing, packet processing and embedded applications, such as high-frequency trading and big data that need higher computation performance-per-varit than traditional CPU configurations can deliver. Altera is demonstrating is CPI 1.1 intellectual property (IP) solution to support both the Caching Agent and Home Agent in a Pactron Vigor Development Platform at the Intel Developers Forum (IDP) Beijing, April 10-11, in Alters 's booth ≢E120.			
being accelerated by FPCAs and Show 201 is the only way to coherently conner order of magnitude lower latency. All to support the Intel 201 electrical specifi machines accelerated by Altera FPCAs adapter and switch maker Mellanox Te channels connecting to four 8 GR RDIM	Q2I is the only way to coherently connect to an Intel server processor. The Altera StratixV FPGA transceiver has been qualified to support the Intel Q2P electrical specification at 8 Gbps. Developers of low-latency, high-bandwidth systems looking to extend the flexible bared memory model that Intel uses for x85 programming can nove efficiently integrate a Stratix V FPGA into their systems. The Home Agent demo addresses 32 GB of memory on the motherboard connected to the socket with support for two channels connecting to four 8 GB RDIMs.			
using Remote Direct Memory Access (*Our GPI 1.1 solution provides develope boosted throughput and cut latencies isgnificantly increase their compute perfi- compute and storage product line at Alter sets through parallel processing and acc	"Our pri 1.1 solution provides developers of data centers and high-performance computing applications a platform to significantly increase their compute performance while reducing system cost and power," said David Gamba, director of the compute and storage product line at Altera. "FPGAs deliver a highly effective, efficient way to speed the processing of large data sets through parallel processing and accelerated data transfers."			

Concluding Remarks

New era of computing

- Future computing platforms will have a sea-of-accelerators
- · With efficient support for customization and specialization
- Customized computing at all levels
 - Chip-level
 - Server node level
 - Data center level
- Software is the key
 - Programming models
 Hopefully transparent to the programmer: Hadoop/MapReduce + C/C++, ...
 - Compilation support
 - Runtime management

62

12/11/14

